

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

B.Tech II Year I Semester Supplementary Examinations December-2021 ELECTRONIC DEVICES AND CIRCUITS

(Common to ECE & EEE)

(Answer all Five Units $5 \times 12 = 60$ Marks)

Time: 3 hours

Max. Marks: 60

		UNIT-I		
1	a	Elaborate the action of PN junction diode under forward bias and reverse bias and	L6	8M
		sketch its v-1 Characteristics.		
	b	The reverse saturation current of a silicon PN junction diode is 10μ A. Solve the diode current for the forward bias voltage of 0.6V at 25^{0} C	L3	4M
12		OR		1 2.
2	a b	Show that the Zener diode can act as a voltage regulator with a neat diagram Explain Positive and Negative Diode Clippers with neat waveforms	L1 L2	6M 6M
		UNIT-II		
3	a	Draw the circuit diagram of a Full wave rectifier and with the help of waveforms describe its operation.	L1	5M
	b	Determine the expressions for Average DC current, Average DC Voltage, RMS Value of Current, DC Power Output and AC Power input of a Half Wave Rectifier.	L4	7M
		OR		
4	a	Demonstrate the working principle of LC filter with neat diagram and derive the expression for its ripple factor.	L2	6M
	b	Explain the volt ampere characteristics of a Tunnel diode with the help of energy band diagrams	L2	6M
		UNIT-III		
5	a	Explain the current components of PNP transistor and deduct the definitions of	L2	7M
		Emitter Efficiency, Base Transportation Factor and Large signal current gain.		
	b	For a transistor, the leakage current is 0.1µA in CB configuration, while it is 19µA	L1	5M
		in CE configuration. Find $\alpha \& \beta$ of the same transistor?		
		OR		
6	Ex	plain the construction and working principle of N-channel JFET.	L2	12M

UNIT-IV

- 7 a Define Stability Factor S. Derive the stability factor S for collector to base bias of L1 6M BJT.
 - **b** Design a collector to base bias circuit for the specified conditions: $V_{cc} = 15V$, V_{CE} **L6** 6M = 5V, $I_C = 5mA$ and $\beta = 100$.
 - OR

Q.P. Code: 19EC0402

- 8 a Illustrate Thermistor Compensation Technique.
 - **b** For the circuit shown in Fig. $\beta = 100$ for the silicon transistor. Simplify V_{CE} and I_C. L4 6M

 L_2

6M

- **9** a With neat diagram, develop the expressions for parameters of CE amplifier using L6 6M approximate analysis.
 - b Examine the expressions for current gain, voltage gain, input impedance and L4 6M output impedance of CB amplifier using simplified hybrid model.

OR

10 For a CB transistor amplifier driven by a voltage source of internal resistance $R_s = L1$ **12M** 1200 Ω , the load Impedance of $R_L = 1000\Omega$. The h parameters are $h_{ib} = 22\Omega$, $h_{rb} = 3 \times 10^{-4}$, $h_{fb} = -0.98$, $h_{ob} = 0.5 \mu A/V$. Find current gain, voltage gain, input impedance and output impedance using exact analysis and approximate analysis.

*** END ***